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A new memoryless expression for the equation of motion for the reduced 
density matrix is derived. It is equivalent to that proposed by Tokuyama 
and Mori, but has a more convenient form for the application of the per- 
turbational expansion method. The master equation derived from this 
form of equation in the first Born approximation is applied to two exam- 
pies, the Brownian motion of a quantal oscillator and that of a spin. In 
both examples the master equation is rewritten into the coherent-state 
representation. A comparison is made with the stochastic theory of the 
spectral line shape given by Kubo, and it is shown that this theory of the 
line shape can be incorporated into the framework of the present theory. 
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1. I N T R O D U C T I O N  

In nonequilibrium statistical mechanics various kinds of treatments have 
been devised to obtain the master equation for a probability distribution 
function or the Langevin equations for relevant physical quantities. (1'2) As 
a result of recent developments in laser physics, quantum optics, and other 
fields of nonequilibrium research, these equations have become rather 
familiar and have been found to provide useful tools. (3-5~ However, most of 
these treatments are formulated on the basis of the so-called damping theory, 
and whether we use the Schrbdinger picture or proceed with the Heisenberg 
picture, we obtain equations with memory. In general, it is a formidable task 
to take the non-Markovian effects into account (6) and in practical applica- 
tions we must almost always be content with the narrowing limit where the 
memory effects are completely neglected. 

However, in the stochastic theory of the spectral line shape formulated 
by Kubo, (7) restrictions such as the narrowing condition are removed, and 
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we can discuss overall features of the resonance absorption, although the 
theory itself is of a phenomenological nature. It is highly desirable to con- 
struct a microscopic theory that is free from the restrictions mentioned 
above and is useful for any time scale, as the stochastic theory is. Fortu- 
nately, a new type of expression was recently proposed by Tokuyama and 
Mori for the equation of motion5 8~ A very important characteristic of this 
expression is its memoryless structure, and the theory based on it shares some 
aspects with the stochastic theory of Kubo. Tokuyama and Mori used the 
Langevin equation approach in the Heisenberg picture, introducing the 
microscopic phase density represented by a delta function as the relevant 
dynamical variable. However, unfortunately, their theory is mostly confined 
to the classical cases, and furthermore, time-dependent Hamiltonians are 
introduced without any modification, which is necessary for the above- 
mentioned new expression. Moreover, it has been recognized that the use 
of the operator delta function involves much mathematical complexity, 
especially in the Heisenberg picture. 

Thus, in the present paper we formulate the problem in the Schr6dinger 
picture, and derive a new expression of the quantal Liouville equation, which 
is equivalent to that of Tokuyama and Mori but is more convenient for the 
perturbational analysis to obtain the master equation. An operator form of 
equation for the reduced density matrix can be transcribed into the c-number 
one by making use of the generalized phase-space method.(9-11) The resulting 
equation for the quasiprobability distribution function has a structure quite 
analogous to that of the classical one, and, as is well known, is suitable for 
obtaining the corresponding classical expression. We do this transcription 
for two model cases and reduce the dynamical aspect of the nonlinear prob- 
lems to a feasible form in the c-number formalism. 

In Section 2 we derive a generalized master equation for the density 
matrix of a system in contact with a heat reservoir in a form convenient for 
the perturbational analysis. Next in Section 3 as a simple application we 
discuss the Brownian motion of a quantal oscillator and its phase diffusion, (12) 
and in Section 4 we investigate a somewhat complicated problem of the 
Brownian motion of a spin. a~ Finally in Section 5 we give a few remarks. 
We use units where h = 1. 

2. G E N E R A L I Z E D  M A S T E R  E Q U A T I O N  IN 
O P E R A T O R  SPACE 

We consider a total system composed of the system under consideration 
and a heat reservoir. The system is assumed to have a Hamiltonian ~ ,  
and the reservoir a Hamiltonian ~ .  An interaction between them is repre- 
sented by 9rCsB. All these operators are assumed to be time independent. 
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The time evolution of the total system is governed by the quantal Liou- 
ville equation for the total density matrix W(t): 

g/(t)  = -i[~t~, W(t)] = - i L W ( t )  (1) 

where L denotes the Liouville operator 

L =  Ls  + LB + LsB (2) 

corresponding to the total Hamiltonian 

= ~ + ~ + ~r (3) 

In order to eliminate irrelevant variables associated with the reservoir, we 
introduce a t ime-&dependent projection operator .~. We can easily derive 
from Eq. (I) our memoryless form of the evolution equation for the pro- 
jected density matrix 2zW(t): 

~Iq / ( t )  = -- i ~ L . ~  W ( t )  - i~L{O(t)  - 1}~ W ( t )  

- i~LO(t)e-'-~Lt~ W(O) (4) 

where we have put -~ = 1 - ~ and defined an operator 

O(t) = [1 - ~(1 - e- '~zt-~du)]-i  (5) 

We give a short derivation of Eq. (4) in Appendix A. Expression (4) can 
be rewritten into the form proposed by Tokuyama and Mori, (s) as is shown 
also in Appendix A. 

As the explicit form of the projection operator ~, which is not neces- 
sary for the derivation of (4), we take, as usual, (2'4) 

~ X  = pB trB X (6) 

where the operator pB in the reservoir space is introduced to ensure the 
idempotent property ~@2 = ~ and in consequence has to satisfy the normal- 
ization condition 

trB pB = 1 (7) 

Here trB denotes the trace in the reservoir space. The reduced density matrix 
for the system is of course defined as 

p(t) = trB W ( t )  (8) 

We see that Ls and LB commute with ~ and hence with 3 :  

~ L s  = Ls~, ,  ~ L B  = L B ~  = 0 
(9) 

~ L s  = Ls~. ~.LB = LB~. = L~ 

and that 

~ W ( t )  = PB'p(t)  (10) 
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I f  we introduce the notation 

( '">8 = trB(.., p~) (11) 

we obtain our final expression for the equation of motion for the reduced 
density matrix of  the system: 

t~(t) = - i ( L s  + <LsB)8)p(t) -- tF(t)p(t) (12) 

where we have introduced an operator 

~t'(t) = <iL{O(t) -- 1})n (13) 

and assumed for simplicity the usual initial condition 

~W(0)  = 0, or W(0) = PB-p(0) (14) 

Our next task is to rewrite the expression for the operator ~F(t) into a 
more tractable form for the perturbational analysis. We transform the 
operators e ~ct and e -~r~t in the operator O(t) in the spirit of  perturbation 
theoryJ 14~ If  we introduce the unperturbed evolution operator 

Uo(t) = e-i%+LB ~ (15) 

we can determine the evolution operator in the interaction picture through 
the definition 

e -'L*= Uo(t)R(t) (16) 

as 

F rt 7 
R ( t ) =  T~. exp[- iJodrUo(- ' r )LsBUo( 'O]  (17) 

Here T~ is the chronological ordering operator. We note that Uo(t) com- 
mutes with ~ and .~ by virtue of Eqs. (9). In a similar way we can deter- 
mine a new evolution operator S( t )  through the definition 

e-~z-~t = S( t )  Vo(t) (18) 

with an unperturbed operator 

Vo(t) = e-~-~(%+LB ~ = ~ + ~Uo( t )~  (19) 

It is easy to show that 

S( t )  = T_~ exp - i  dr~Uo(~')LsJJo(-  , ) ~  (20) 

where T_~ denotes the antichronological operator. In contrast to Eq. (16), 
we have put S( t )  on the left of Vo(t) in Eq. (18). This is only for the purpose 
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of writing the expression of O(t) in a simpler way. The structure of S ( t )  
shows that S ( t )  commutes with ~, whence we have the relation 

e - ~ z t ~  = ~ e  -i'~L'~t= .~S ( t )Uo( t )  (21) 

Then the operator O(t) can be written in the form 

O(t) = [I + . ~ { S ( t ) R ( - t )  - 1}] -1 (22) 

Substituting this expression for O(t) into Eq. (13), we obtain the desired 
expression for W(t): 

/ . ~ { S ( t ) R ( - t ) -  1} \ 
~F(t) = - - i ~ x L s B  1 + . ~ { S ( t ) R ( - t )  - 1}2 (23) 

Equation (12) with this expression for qr(t) is exact, within the range 
of the initial condition (14), and has a form convenient for the perturbational 
expansion in powers o f L s B .  In subsequent sections, we shall confine ourselves 
to the usual perturbational expression, which is valid up to O(LsB2). In this 
Born approximation, since we have already one factor LsB explicitly in 
expression (23), we may put S ( t )  = R ( - t )  = 1 in the denominator and 
are required to determine the product S ( t ) R ( - t )  in the numerator up to 
O(LsB):  

~ { S ( t ) R ( - t )  - 1} = i d r . ~ U o ( r ) L s s U o ( - r ) ~  (24) 

Thus we have the approximate expression 

W(t )  = dr (Ls~ .~  Uo(r)LsB)se'Zs ~ (25) 

In the conventional treatment of the damping theory one has the equa- 
tion with memory [obtained from Eq. (60)] 

f0' ~(t)  = - i ( L s  + (LsB)B)p( t )  -- dr (LsBe-~-~L~LsB)Bp( t  -- -r) (26) 

or, within the Born approximation, 

s r --- - i ( L s  + ( L s B ) B ) p ( t )  --  d , ( L s B ~ S o ( , ) L s ~ ) ~ p ( t  - , )  (27) 

One usually either neglects the time displacement ~- in p(t - r) by assuming 
the narrowing limit or puts approximately p(t  - r) = dcs~p(t). These am- 
biguous assumptions are not necessary in our treatment. Equation (25) 
is exact within the Born approximation. We find that the conventional 
approximation p(t - r)  = dL,~p(t) leads rather to the exact result. 
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3. B R O W N I A N  M O T I O N  OF A Q U A N T A L  OSCILLATOR. 
R A N D O M  FREQUENCY M O D U L A T I O N  

As a first application, let us consider a quantal oscillator weakly inter- 
acting with a heat reservoir, which is assumed to be large enough and to 
stay always in its thermal equilibrium. We do not impose any such require- 
ment as, for instance, making the correlation time of the reservoir much 
shorter than the relaxation time of the system. 

In the Hamiltonian (3) we take 

o~s = wob*b (28a) 

and 

~sB = g(bB* + b'B) + g'b*bF (28b) 

where the Bose operators b and b* represent the quantal oscillator, and B 
and B* are the reservoir operators: Usually one takes P as B*B. The reservoir 
Hamiltonian o~  need not be explicitly specified. Because of the condition 
imposed on the reservoir we may use for p• the unperturbed canonical form 

p8 = e- Bae~/trB(e- eaeB) (29) 

We neglect a time-independent shift from o~ 0 and assume 

~ L s B ~  = 0 (30) 

Then Eq. (12) with expression (25) reduces to 

f; t~(t) = - i [ ~ s ,  p(t)] + dr tr~{[~sB, p(t)pB~sB(--'r)] + H.c.} (31) 

where 

�9 ~s~(~') = e~<X'~+~B)~o~sBe -"~+aeB~ (32) 

More explicitly we find 

t~(t) = - ioJo[b*b, p(t)] 

+ q~* _(t)[b*, p(t)b] + ok*_ +(t)[b, p(t)b*] 

+ ~+ _(t)[b*p(t), b] + (~_ +(t)[bp(t), b*] 

+ ~o*(t)[b*b, p(tib*b] + ~o(t)[b*bp(t), b'b] (33) 

where the q~(t) are given by 

q~ + _ (t) = g2 dre -  ~%~(B'('r)B(0))B (34a) 

dp_ +(t) = g2 d.re+~%~<B(.r)B*(O))B (34b) 

f 

= | (34c) 
Jo 
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The operator equation (6) can now be transformed into a c-number one 
with the aid of the coherent-state representation. (s~ If  we use the antinorrnal 
ordering of operators, the necessary transcription rules are 

pb ~ (~ - O/Oa*)P(a, c~*) (35a) 

bp --> aP(a, a*) (35b) 

pb* --+ a*P(a, a*) (35c) 

and 

b* p -+ (~* - ~/?a)P(a, ~*) (35d) 

the following master equation for the quasiprobability 

and 

where 

fo W(t) = (g2/i) dTe-'%*([B*(r), B])B 

= (1/i){r _(t) -- r +(t)} ~- ~F'(t) + iW"(t) (37a) 

J2 *( t )  = g2 dre-'%~({B*('r), B)B 

= r  + r +(t) ==- q)'(t) + iq)"(t) (37b) 

f2 ~Fo(t ) = (g'2/i) d~-([r(,), r(O)])~ (37c) 

t 

qbo(t ) = g'2jo dr({F(r), F(0)})B (37d) 

Equation (36) gives a generalization of the conventional result for the damped 
harmonic oscillator, and reduces for a large enough t to the usual expression 
in the narrowing limit. r 

Thus we obtain 
function P(~, ~*, t): 

1 ~ F o ( t )  a - c~* P(a, e~*, t) = i o~ o + ~F'(t) + ~ 

+ 'F"(t) + ~ ~ ~* 

3 1 ~bo(t) a 2 +UFo(t ) c ~ - ~ a *  a * a - ~  ~ + ~ a  .2 

( 0 5 )  ~2 1 02 a2 + ~a*~3a a*a _ "2 iVFo(t ) ~ 0-~ 2 a,2 ~o(t) 

+ [qb'(t) - tF"(t)] ~ P(a, c~*, t) (36) 
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It may be interesting to compare our results with those derived from 
Kubo's stochastic Liouville equation. Kubo considered an oscillator whose 
frequency is subject to random modulation(7): 

2 ( 0  = i{co o + to l ( t )}x( t )  

o r  

cb(t ) = tol(t ) 

when we use the phase angle ~(t) defined by 

x ( t )  = e~o t +~(t~x(O) 

If  the stochastic process co~(t) is assumed to be Gaussian, the transition 
probability of finding q~(t) = ~o at a time t after it has been ~0' at t = 0 is 
given by 

f(% t[ ~o', 0) -- exp{�89 ~2/~o2} $(q~ - cp') (38) 

with 

C ( t )  = 2 dr(t  - ~-)(,o1(r)~o1(0)> (39) 

Clearly, the transition probability (38) satisfies the diffusion equation 

1 02 
O(t) ~-~2 f (% t) (40) f(% t) = 

with the t ime-dependent  diffusion coefficient 

d'(t) = 2 d,<o~l(~)o~(0)> (41) 

In our quantal oscillator, the corresponding random frequency modula- 
tion arises from the g' term in the interaction ~sB; therefore we will drop 
the g term. The Gaussian process assumption corresponds exactly to our 
Born approximation. By the change of variables 

a = re i~ 

we can rewrite Eq. (36) as 

0 18r2 
P(a , a* , t )  = [~o o + W ' ( t ) ] ~  + W"(t)  r 

( 1 c9'~r2 0 
+ % ( 0  1 - ~ a r ]  

, ( 0  o 02 ) 
+ [*'(t) - W"(t)] ~ r ~r r ~ + 

1 *o(t) ~ P(~, ~*, t) (42) +~ 
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Defining the quasiprobability distribution on a rotating coordinate system 

F(% t) = [exp(-wot ~3/~3q~)lP(% a*, t) 

and setting g = 0, we obtain our diffusion equation 

1 qb0(t) ~2 Je(~o, t) = ~ ~ F(% t) (43) 

in the classical limit,/3 -+ 0, in which the leading terms of the Ws are 0(/3) 
while those of the q~s are O(1). We see the complete correspondence between 
Eq. (40) with the coefficient (41) and Eq. (43) with the coefficient (37). Thus 
we have established an important relationship between the stochastic theory 
of Kubo and our microscopic theory. This means that our master equation 
can surely be used not only for the narrowing limit, but also for short-time 
phenomena. 

4. N O N L I N E A R  SPIN RELAXATION 

As a second application, let us consider the Brownian motion of a 
quantal spin interacting with a heat reservoir and under an applied static 
magnetic field Ho in the z direction. In the Hamiltonian (3) we take 

ae~ = o~oS~ (,oo = y~/0) (44a)  

and 
~sB = gS .R (44b) 

where R represents an effective field acting upon the spin S due to the motion 
of the reservoir. We assume again Eqs. (29) and (30) and, using the relation 

e~~S~ = S~e~~ t (45) 

we obtain from Eq. (31) the master equation 

f,(t) = - io,  o[S~, p(t)] + r p(t)S_] + ~*_ +(t)[S_, p(t)S+] 

+ r _(t)[S+p(t), S_] + r S+] 

+ q~*~(t)[S~, p(t)S~] + ~5~(t)[S~p(t), S~] (46) 

where we have introduced 

~+_(t) = 

and 

~_ +(t) = 

g2 [ t  dre-'~o~(R+(z)R_(O))~ (47a) 
2o 

�88 [ '  dTe,~o~<n_ ( , ) R  + (0))B (47b) 
20 

q~(t) = g2 dr(R~(r)R~(O))B (47c) 
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The transcription of the operator equation (46) into the one in the phase- 
space description can be performed by the generalized phase-space method 
for the spin operators. (~~ In particular, a product of the spin operator S 
and an arbitrary operator G is mapped onto the c-number space according 
to the rules 

SG --~ Se(n>F(a~ (48a) 

and 
- 9 "  

GS --+ 6~<a~*F~a~ (48b) 

where the superscript f2 specifies the rule of association and 6 e~"~ is explicitly 
represented by 

6 a<n) = �89 + M <n) (49) 

with 

M < m = S I n - � 8 9 2 1 5  

o r  with 

M <A) ----- ( S  + 1)m + �89 • L 

(for f2 = normal ordering) (50a) 

(for f~ = antinormal ordering) 
(50b) 

Here m denotes the unit vector 

m = (sin ~ cos 9, sin # sin ~, cos u ~) 

and L is the operator for the orbital angular momentum.  
Let the c-number equivalent of p(t) be F(a~(m, t). Then the association 

rule (49) enables us to transform Eq. (46) into the following phase-space 
form : 

{a/Ot + i[oJ o - O~ _(t)]L~ + 0'+ _(t)(Lx 2 + L~ 2) + �89 ~ 

- i[2~F'+ _(t) - ~F~(t)]L~M~ a ) -  2itW+ _(t)  
(f~) (~) = x LrLx-,*~t(my _ L ~ M ,  ]}F (m, t) 0 (51) 

where we have defined the correlation functions 

f2 W+_( t )  = (g2/4i) dre- '%~([R+(r) ,  R-])B 

= (1/i)[ ,k+ _ ( t )  - ~ *  +(t) ]  = q~+ _ ( t )  + i~F~. _ ( t )  (S2a) 

f2 tFz~(t ) = (g2/i) dr([R. (r ) ,  Rzl)B = (1/i)[~.(t) -- ~*~(t)] (52b) 

o+ _(t) = ~g~ ( '  d~e-'~o'({R+(-O, R-})B 
Jo 

= ~+ _(t)  + r +(t) =---- 0'+ _(t)  + iO"+ _(t)  (52c) 
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and 

f2 (P~( t )  = g2 d r ( { R ~ ( t ) ,  Rz} )B  = Czz( t )  + r (52d) 

In the derivation of Eq. (51), we have made use of the relations 

L . m  = 0, L.(m • L) = 0 (53) 

and 

L . M  (a> = 0 (54) 

which are proved in Appendix B. The master equation (51) may be written 
in the following simpler form: 

{~/Ot + iL.TH0[1 + 3(t) + K(t)Ho.M (a~] 

- i L . D ( t ) . i L  + v(t) iL.(M (a~ • H0)}Ua)(m, t) = 0 (55) 

where we have put 

~(t)  = - q~'; _(t)/~Oo (56a) 

K(t) = ),[~F'~(t) - 2~'+ _(t)]/O~o 2 (56b) 

~( t ) = - 27q~"+ _ ( t )/OJo (56c) 

and 

with 

l(lJ. t  o :) 
D(t) = ~ 0 1/~-~(t) 

o o 1/~o(t) 

(56d) 

1/rl(t ) = 2qb'+_(t), l/to(t) = qb'~(t) (57) 

It should again be emphasized that Eq. (55) is equivalent to the original 
operator equation (46), although it has been transformed into the c-number 
language. Quantum effects appear through the definitions of the coefficients 
(56)-(57) and of the expression M (a~. 

In the narrowing limit, where we are allowed to extend t appearing in 
Eqs. (56a)-(56d) to infinity, Eq. (55) reduces to the form derived pre- 
viously. (1~ It is remarkable that we can obtain the master equation valid 
for any time scale only by retaining the upper limit of the r integrals appear- 
ing in the functions (52a)-(52d) to the finite value t. 

5. C O N C L U D I N G  R E M A R K S  

We have seen that our expression for the quantal master equation, in 
a form suitable for the application of perturbational treatment, is success- 
fully applied to two examples, and that the essential features of the Kubo 
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theory of the line shape can be incorporated into the framework of our theory. 
Some remarks are due with respect to the latter point. 

First, we can integrate Eq. (12) by making use of a suitably chosen 
ordered exponential function, as 

fo ~ 
p(t )  = e x p . _ { - i ( L s  + (LsB)B) t  -- d , ( t  - ,)q~@)}p(O) (58) 

where 

�9 (~) = (iLsBO(,))~ (59) 
We can see the analogy of this operator expression to the transition prob- 
ability (38) with the coefficient (39) in the stochastic theory of Kubo. Thus 
we can discuss various results obtained either as a long-time approximation 
(narrowing limit) or as a short-time approximation in the same way as in 
the Kubo theory. The selection of time scale in which we are interested can 
be done more easily and more systematically by the method of time scaling. 
The latter method will be applied in a separate paper. 

Next, if we want to generalize the stochastic Liouville equation due to 
Kubo in a straightforward way, we should rather introduce a t ime-dependent  

stochastic Hamiltonian instead of the explicit introduction of a heat reser- 
voir. To do this, we have to modify our expression. This problem is con- 
nected with the one to be discussed below. 

Finally, we should refer to the memory in the conventional damping- 
theoretical expression 

f: I~( t )  = - i ~ L ~  W ( t )  - d ' r ~ L e - ~ z ~ . ~ L ~  W ( t  - -r) 

- i ~ L e - ~ z L ~  W(O) (60) 

Comparing this expression with Eq. (4), we see that the latter expression can 
be obtained by transferring some part, i.e., 1 - O(t), of the last destruction 
term in the former into the memory term to cancel the memory effect. This 
condition is sufficient to determine the exact form of O(t), Eq. (5) in the case 
of time-independent Jg  and ~. This will be shown in subsequent papers, in 
which generalizations to the cases of a t ime-dependent  Hami l ton ian  and of a 
t ime-dependent  projec t ion  operator  will also be done. These generalizations 
are necessary in dealing with various problems in physics. 

In conclusion, as we have already referred to in Section 3, it should be 
emphasized that in practical applications there will be cases in which our 
memoryless form of the master equation gives improved approximate solu- 
tions compared to those given by the conventional form with memory. 
Equation (t2), with the operator (13) or (23), and Eq. (26) are of course 
both exac t ,  under the initial condition (14), and coincide with each other 
in the narrowing limit. But if we truncate the operator ~F(t) in our Eq. (12) 
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or the memory kernel in the conventional equation (26), the situation changes, 
and it may occur that these two approximate master equations, Eq. (12) 
with (25) and Eq. (27), give quite different solutions except in the narrowing 
limit. An important and frequently found example is a local ized s y s t em  

under the influence of its surroundings, to which the present theory is mainly 
intended to apply, and for which the force produced by the surroundings 
and acting upon the system may be regarded as behaving like a Gaussian 

process .  In the limit where the force is strictly a Gaussian process, the lowest  
order equation,  i.e., Eq. (12) with (25), will  become  exac t ,  whereas the corre- 
sponding equation (27) will be a poor approximation for an arbitrary time 
scale. In order to prove this statement we should take steps similar to proving 
the central limit theorem by assuming the force, or the interaction Hamil- 
tonian YfsB, composed of a large number of parts. This is an interesting and 
important problem in mathematical physics, but it will require sophisticated 
mathematical tools, such as those used by Davies et al. ~15~ to take the narrow- 
ing limit. Instead of doing the proof within the present formulation, we 
shall discuss Kubo's s tochast ic  mode l  of frequency modulation referred to 
in Section 3, for which all the equations concerned can be solved exactly. 
This will be done in our next paper, where we shall discuss the stochastic 
Liouville equation. 

A P P E N D I X  A. S H O R T  PROOF OF EQ. (4)  

Introducing an operatorf(t) defined by 

f ( t )  = ~ + e - ' a L t ~ e  'Lt (A.1) 

and its inverse O(t), we write the quantal Liouville equation as 

IzV(t) = - i L O ( t ) f ( t )  W ( t )  

= - i L O ( t ) g  W ( t )  - iLO(t)e-*aL'~ W(O) (A.2) 

where we have used 
W ( t )  = e-*LtW(O) (A.3) 

Separating the drift term - i L ~ W ( t )  from the first term in Eq. (A.2), we 
arrive at expression (4). 

Making use of the identity 

f2 O ( t ) -  1 = dr~(r )  (A.4) 

and the relation 

0(r) = 0(,)f(,)0(,) 

= - O(r)e-'az*i~Le*L' O(r) (A. 5) 

we can transform Eq. (4) into the form proposed by Tokuyama and Mori. 
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It might be considered that the form o f f ( t )  or of O(t) was arbitrarily 
taken, but this is not the case. As is discussed in the concluding remarks 
in the text, the form of O(t) is determined uniquely by the damping theory. 

APPENDIX B. PROOF OF EQS. (53) A N D  (54) 

The orbital angular momentum is represented by 

L ~ = i  sin 7 ' ~ + c o t u  acos~o 

Lv = i  -cos~o~-~ + co tu  a s i n ~  

a 
Lz = - i ~  

and 

(B.la) 

(B.lb) 

(B. 1 c) 

which can be rewritten by considering mx and my as independent variables: 

a a 
Lx = im~ -~my' Lv = - im~ am,: (B.2a) 

and 

We see that 

L~ = i(mv ~ -  m a (B.2b) 

and 

m.L = mxLx + muLu + mzL~ = 0 (B.4b) 

Let us next consider the quantity L . (m • L). This can be calculated as 

L.  (m X L) = Lx(muL~ - m~L~) + L~(m~Lx - m~L~) + L~(mxLy - m~L~) 

= [m~Lz, Ly] + [m~Lx, L~] 

+ [m~L v, Lx] + i(m~L~ + mvL~ + mzL~) 

= im-L = 0 (B.5) 

by virtue of Eqs. (B.3) and (B.4b). I f  we use Eqs. (B.4a) and (B.5), we find 
at once Eq. (54) for the expressions (50a) and (50b). 

[L,, Lv] = iLa, [m,, Lv] = ima (B.3) 

provided that a set (,~,/z, v) forms an even permutation of (x, y, z). 
From Eqs. (B.2) we immediately prove that 

L . m  = Lxmx + Lym~ + L~mz = 0 (B.4a) 
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